首页> 外文OA文献 >Prospects for storage and retrieval of a quantum dot single photon in an ultracold $^{87}$Rb ensemble
【2h】

Prospects for storage and retrieval of a quantum dot single photon in an ultracold $^{87}$Rb ensemble

机译:存储和检索量子点单光子的前景   ultracold $ ^ {87} $ Rb ensemble

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Epitaxially grown quantum dots (QDs) are promising sources of non-classicalstates of light such as single photons and entangled photons. However, in orderfor them to be used as a resource for long-distance quantum communication,distributed quantum computation, or linear optics quantum computing, thesephotons must be coupled efficiently to long-lived quantum memories as part of aquantum repeater network. Here, we theoretically examine the prospects forefficient storage and retrieval of a QD-generated single photon with a 1 nslifetime in a multi-level atomic system. We calculate using an experimentallydemonstrated optical depth of 150 that the storage (total) efficiency canexceed 46% (28%) in a dense, ultracold ensemble of $^{87}$Rb atoms.Furthermore, we find that the optimal control pulse required for storage andretrieval can be obtained using a diode laser and an electro-optic modulatorrather than a mode-locked, pulsed laser source. Increasing the optical depth,for example by using Bose-condensed ensembles or an optical cavity, canincrease the efficiencies to near unity. Aside from enabling a high-speedquantum network based on QDs, such an efficient optical interface between anatomic ensemble and a QD can also lead to entanglement between collectivespin-wave excitations of atoms and the spin of an electron or hole confined inthe QD.
机译:外延生长的量子点(QD)是光的非经典状态的有希望的来源,例如单光子和纠缠光子。但是,为了使它们用作远程量子通信,分布式量子计算或线性光学量子计算的资源,这些光子必须有效地耦合到作为量子转发器网络一部分的长寿命量子存储器。在这里,我们从理论上检查了在多级原子系统中有效存储和检索QD生成的单光子(寿命为1 ns)的前景。我们使用实验证明的光学深度150进行计算,得出在密集,超冷的$ ^ {87} $ Rb原子集合中,存储(总)效率可以超过46%(28%)。此外,我们发现,所需的最佳控制脉冲可以使用二极管激光器和电光调制器而不是锁模脉冲激光源来获得存储和检索。例如通过使用玻色凝聚的组件或光学腔体来增加光学深度,可以将效率提高到接近统一。除了启用基于QD的高速量子网络外,在解剖系综和QD之间的这种高效光学接口还可以导致原子的集体自旋波激发与电子或自旋在QD中的空穴的自旋之间发生纠缠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号